Floating Gate, Organic Field-Effect Transistor-Based Sensors towards Biomedical Applications Fabricated with Large-Area Processes over Flexible Substrates
نویسندگان
چکیده
Organic Field-Effect Transistors (OFETs) are attracting a rising interest for the development of novel kinds of sensing platforms. In this paper, we report about a peculiar sensor device structure, namely Organic Charge-Modulated Field-Effect Transistor (OCMFET), capable of operating at low voltages and entirely fabricated with large-area techniques, i.e., inkjet printing and chemical vapor deposition, that can be easily upscaled to an industrial size. Device fabrication is described, and statistical characterization of the basic electronic parameters is reported. As an effective benchmark for the application of large-area fabricated OCMFET to the biomedical field, its combination with pyroelectric materials and compressible capacitors is discussed, in order to employ the proposed device as a temperature pressure sensor. The obtained sensors are capable to operate in conditions which are relevant in the biomedical field (temperature in the range of 18.5-50 °C, pressure in the range of 10²-10³ Pa) with reproducible and valuable performances, opening the way for the fabrication of low-cost, flexible sensing platforms.
منابع مشابه
Performance Investigation of Pentacene Based Organic Double Gate Field Effect Transistor and its Application as an Ultrasensitive Biosensor
In this paper, the electrical performance of double gate organic field effecttransistor (DG-OFET) are thoroughly investigated and feasibility of the deviceas an efficient biosensor is comprehensively assessed. The introduced deviceprovides better gate control over the channel, yielding better charge injectionproperties from source to channel and providing higher on-state...
متن کاملTop-gate Organic Field-effect Transistors Fabricated on Shape- memory Polymer Substrates
We demonstrate top-gate organic field-effect transistors (OFETs) with a bilayer gate dielectric and doped contacts fabricated on shape-memory polymer (SMP) substrates. SMPs exhibit large variations in Young’s modulus dependent on temperature and have the ability to fix two or more geometric configurations when a proper stimulus is applied. These unique properties make SMPs desirable for three-d...
متن کاملFlexible low-voltage organic transistors based on a novel, high-mobility organic semiconductor
Organic thin-film transistors (TFTs) are of interest for a variety of large-area electronics applications, such as flexible active-matrix displays and conformable sensor arrays [1]. Among the challenges in the development of high-performance organic TFTs, especially on flexible polymeric substrates, is to realize organic TFTs that simultaneously provide a large field-effect mobility, a large on...
متن کاملUltra-high gain diffusion-driven organic transistor
Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually ...
متن کاملOrganic nano-floating-gate transistor memory with metal nanoparticles
Organic non-volatile memory is advanced topics for various soft electronics applications as lightweight, low-cost, flexible, and printable solid-state data storage media. As a key building block, organic field-effect transistors (OFETs) with a nano-floating gate are widely used and promising structures to store digital information stably in a memory cell. Different types of nano-floating-gates ...
متن کامل